Facial Cleansers

- Facial cleansing serves as a means to remove dead skin, dirt, oil and cosmetics
- Important first step in overall skin care routine, preparing the skin for other active ingredients

Four Goals of Facial Cleansing

- Clean skin (removing surface dirt and all make-up)
- Provide basic level of exfoliation
- Remove potentially harmful microorganisms
- Cause minimal damage to epidermis and dermis
Cleansing Mechanisms

- By chemistry
- By physical action
- By combination of chemistry and physical action

Cleansing by Chemistry

- Classes of chemicals used in facial cleansers
 - Surfactants
 - Solvents

Surfactants

- Amphiphilic compounds
- Contain both hydrophilic and hydrophobic groups
- Causing them to be oil and water soluble
Surfactant Mechanism of Action: Emulsification

- Reduce tension that keeps water and oil separated on the skin surface
- Once absorbed, surfactants form micelles

Surfactant Mechanism of Action

- When micelles form in water, their tails form core encapsulating oil droplets and their heads form outer shell maintaining contact with water
- Clean skin by emulsifying oily compounds on the surface of the skin with water

Surfactant Categories

- **Cationic Surfactants**
 - Poorly tolerated when used alone
 - Rarely used in skin care products
- **Anionic Surfactants**
 - Molecules with negatively charged “head” and hydrophobic “tail”
 - Good lathering and detergent properties
Surfactant Categories

- Amphoteric Surfactants
 - Well tolerated, lather well
 - Used in facial cleansers
- Nonionic Surfactants
 - Uncharged molecules
 - Very mild
 - Do not lather well

Solvents

- Liquid that dissolves a solid or another liquid into homogenous solution
- “like dissolves like”
- Cleans skin by dissolving sebaceous oil and external oil applied to skin

Solvent Categories

- Polar solvents
 - Alcohol family
- Nonpolar solvents
 - Oil family
- Usually not used in water
Physical Cleansing

- Friction caused by interaction of washcloth, cotton ball, etc. with surface of skin
- Friction increases interaction of chemical cleaning agents

Types of Facial Cleansers

- Lathering cleansers
- Emollient cleansers
- Cleansing milks
- Scrubs
- Toners
- Dry lathering cleansing cloths
- Wet cleansing cloths

Cleanser Technology & Skin Types

<table>
<thead>
<tr>
<th>Cleanser Type</th>
<th>Primary Cleansing Mechanism</th>
<th>Key Characteristics</th>
<th>Skin Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid lathering</td>
<td>Emulsification</td>
<td>Forms lather when wet</td>
<td>Oily</td>
</tr>
<tr>
<td>Emollient</td>
<td>Emulsification</td>
<td>Non-lathering</td>
<td>Dry</td>
</tr>
<tr>
<td>Scrubs</td>
<td>Emulsification</td>
<td>Non-lathering, particulates provide exfoliation</td>
<td>Oily, flaky</td>
</tr>
<tr>
<td>Milks</td>
<td>Dissolution</td>
<td>High conditioning, not used with water</td>
<td>Dry skin</td>
</tr>
<tr>
<td>Toners</td>
<td>Dissolution</td>
<td>Low viscosity liquid, pore tightening</td>
<td>Oily, young</td>
</tr>
<tr>
<td>Dry cleansing cloths</td>
<td>Emulsification & physical removal</td>
<td>Cleansing, conditioning, exfoliating, toning</td>
<td>All skin types</td>
</tr>
<tr>
<td>Wet cleansing cloths</td>
<td>Dissolution & physical removal</td>
<td>Cleansing, conditioning, exfoliating, toning</td>
<td>Dry skin</td>
</tr>
</tbody>
</table>
Selecting Facial Cleansers

- Based on skin type
- Based on cleansing form
- Based on skin problems

Moisturizers

Characteristics of “Dry Skin”

- Visual: redness, lackluster surface, dry patches, flakes, cracks
- Tactile: rough, uneven surface
- Sensory: feels dry, uncomfortable, painful, itchy, stinging and tingling sensation
- Chemical: reduced water content, reduced NMF content, altered lipid composition
- Functional: impaired barrier function
Chemical Characteristics of Dry Skin

Water Content

- Epidermal barrier composition:
 - Cellular protein matrix
 - Keratinocytes
 - Corneocytes
 - Intercellular lipid bilayer matrix
- Epidermal barrier responsible for maintenance of skin integrity, water balance, hydration, desquamation

Water Content

- Lack of balance in epidermal barrier causes transepidermal water loss (TEWL)
- Results in dryness, scaling
- Ideal water content of stratum corneum 20-35%
Natural Moisturizing Factor (NMF)

- Moisture content of corneocytes maintained by NMF
- NMF components
 - Free amino acids
 - Pyrrolidone carboxylic acid (PCA)
 - Lactate
 - Sugars
 - Urea
 - Choline, sodium, calcium, etc.
- When water level of stratum corneum falls below 10%, enzymatic function needed for desquamation is impaired

Lipid Composition

- Epidermal barrier lipids
 - Free fatty acids
 - Cholesterol
 - Ceramides

Lipid Composition

- Lipids of extracellular matrix are bipolar
 - Hydrophilic heads
 - Hydrophobic tails
- Controls water permeability and regulates TEWL
Barrier Function

- Transepidermal barrier water loss (TEWL) is homeostatic signal for maintenance and repair of epidermal barrier function
- Moisturizers imitate role of lipids in restoring epidermal barrier function

Moisturizer Ingredients

- Occlusives
- Humectants
- Emollients

Occlusives

- Reduce TEWL
- Forms hydrophobic film on skin surface
- Often greasy in nature
Occlusive Agents

- **Hydrocarbon oils/waxes**
 - Petrolatum
 - Mineral oil
 - Paraffin
 - Squalene
 - Silicone derivatives
 - Dimethicone
 - Cyclomethicone

- **Fatty alcohols**
 - Cetyl alcohol
 - Stearyl alcohol
 - Lanolin alcohol

- **Fatty acids**
 - Stearic acid
 - Lanolin acid

- **Wax esters**
 - Lanolin
 - Beeswax
 - Stearyl stearate

- **Vegetable waxes**
 - Carnauba
 - Candelilla

- **Phospholipids**
 - Lecithin

- **Sterols**
 - Cholesterol

- **Polyhydric alcohols**
 - Propylene glycol

Petrolatum

- Purified mixture of semisolid hydrocarbons from petroleum
- Accelerates recovery of skin surface lipids
- Permeates throughout corneum layer allowing normal barrier recovery despite occlusive properties
Stearyl Alcohol

- Used in cosmetic formulations for emulsions, antifoaming, and lubricating actions
- Viscosity agent
- Saturated alcohol of high purity

Stearic Acid

- Emulsifier and thickening agent found in vegetable fats
- May cause allergic reactions in sensitive skin and is considered comedogenic

Beeswax

- One of the oldest raw ingredients used in skin care
- On skin’s surface can form a network
- Credited with anti-inflammatory, antiallergic, antioxidant, antibacterial, germicidal, skin softening, and elasticity enhancing properties
Carnauba

- Wax obtained from leaves and leaf buds of Brazilian wax palm
- Used to firm and texturize cosmetic preparations
- Forms protective layer on skin’s surface

Humectants

- Ability to attract water from dermis to epidermis
- Some humectants also possess emollient properties
- Combination of occlusive and humectant ingredients complement each other in maintaining epidermal hydration and barrier function

Humectants

- Glycerin (glycerol)
- Honey
- Sodium lactate
- Ammonium lactate
- Urea
- Propylene glycol
- Sodium PCA
- Hyaluronic acid
- Sorbitol
- Polyglycerylmethacrylate
- Panthenol
- Gelatin
Urea
- Found to increase absorption of active ingredients, relieve itchiness, and leave skin feeling soft and supple
- Attracts and retains moisture in corneum layer
- Desquamating action as it dissolves intercellular cement in the corneum layer
- Properties include anti-inflammatory, antiseptic, deodorizing, anti-microbial
- Does not include allergy, phototoxicity, or sensitivity

Sodium PCA
- High performance humectant due to moisture-binding ability
- Derived from amino acids
- Exists naturally in skin as component of NMF
- Noncomedogenic, nonallergenic

Hyaluronic Acid
- Glycocoaminoglycan component occurring naturally in dermis
- Excellent water-binding capabilities
- When applied to skin, hyaluronic acid forms viscoelastic film making it ideal moisturizer base
Emollients

- Fill gaps between desquamating corneocytes
- Responsible for smooth, soft texture of the skin

Emollients

- Protective emollients
 - Diisopropyl dillinolate
 - Isopropyl isostearate
- Fatting emollients
 - Castor oil
 - Propylene glycol
 - Octyl stearate
 - Glycerol stearate
 - Jojoba oil
 - Avocado oil

Emollients

- Astringent emollients
 - Dimethicone
 - Cyclomethicone
 - Isopropylmyristate
 - Octyl octanoate
- Dry emollients
 - Isopropyl palmitate
 - Decyl oleate
 - Isostearyl alcohol

Jojoba Oil
- Reduces TEWL without blocking transportation of water vapor and gases, providing suppleness and softness to the skin
- Naturally occurring ester

Avocado Oil
- Consists of oleic, linoleic, and linolenic acids
- Highest penetration rate among similar oils
- High concentration of vitamins A, D, and E
- May mobilize and increase collagen in connective tissue
- Bacteriocidal and soothing properties

Isopropyl Palmitate
- Emollient and moisturizer derived from coconut oil
- Produced from combination of palmitic acid and isopropyl alcohol
- Comedogenicity potential
Isopropyl Myristate

- Myristic oil found in nutmeg or coconut oil
- Emollient, moisturizer, and skin softener that assists in product penetration
- Considered comedogenic

Moisturizer Formulations

- Oil in water emulsions
 - Lotion
- Water in oil emulsions
 - Cream