COVID-19 TREATMENTS

Sahar Swidan, Pharm.D.

TREATMENT

Review 30,000 level of initial treatments Review mechanism of action Future studies

HYDROXYCHLOROQUINE

MECHANISM

- block viral entry into cells by inhibiting glycosylation of host receptors
- Proteolytic processing
- Endosomal acidification
- Immunomodulatory effects through attenuation of cytokine production and inhibition of autophagy and lysosomal activity in host cells.
- Chloroquine inhibits SARS-CoV-2 in vitro. Hydroxychloroquine has in vitro activity with a lower EC₅₀ for SARS-CoV-2 compared with chloroquine after 24 hours of growth

Dose and Warnings

- 400mg Bid for day 1, 200mg Bid x 4 Days
- 200mg BID x 10 days
- Cardiac warning- QT prolongation
- Hypoglycemia
- Retinal warning
- Neuropsychiatric effects

Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Int J Antimicrob Agents. 2020 Mar 20

	Study Definitions	Comments
Design	Multiple centers in southern France Open-label non-randomized	 Main center patients received study drug Other centers did not get study drug
Population	≥ 12 years old with PCR confirmed SARS- CoV-2	Very general inclusion criteria, so were all patients in this hospital with COVID-19 treated with hydroxychloroquine?
Intervention	Hydroxychloroquine 200mg TID x10 days	 Q fever dose Higher dose thanis being used in other studies
Primary Endpoint	Viral clearance at day 6	Some patients have a number reported for viral load (Cycle threshold), while others are only reported as positiveor negative

	Control, n=16	Hydroxychloroquine, n=20
Age	37.3 ± 24	51.2 ± 18.7
	(range 10-75)	(range 20-87)
Clinical status		
Asymptomatic	4 (25%)	2 (10%)
URTI	10 (62.5%)	12 (60%)
LRTI	2 (12.5%)	6 (30%)
Time between onset of symptoms and inclusion (days)	3.9 ± 2.8	4.1 ± 2.6

Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: an observational study

	Study Definitions	Comments
Design	Single center, observational, single arm	77 from main hospital, 3 from temporary COVIDunit
Population	Adults with PCR confirmed SARS-CoV-2 that received study drugs for at least 3 days with 6 days of follow up	Did not tell us how any patients were excluded if they did notreceive 3 days of study drug
Intervention	Hydroxychloroquine 200mg TID x 10 days Azithromycin 500mg x 1 dose then 250mg daily x 4 doses	

	N=80	Comments
Age	52.5 (IQR 42-62)	
Chronic conditions		Top 3 comorbidities
Hypertension	13 (16.3%)	
Diabetes	9 (11.2%)	
Chronic respiratory	8 (10%)	
Clinical status		Heterogeneous
Asymptomatic	4 (5%)	population
URTI	33 (41.2%)	
LRTI	43 (53.8%)	
Low NEWS	69 (92%)	Mild disease
Fever	12 (15%)	Low fever and low rate
	38.6 ± 0.12	of fever
Time between onset of	4.9 ± 3.6	Similar to last study,
symptoms and inclusion		treated early
(days)		

Summary

	N=80	Comments
Oxygen therapy	12 (15%)	
Transfer to ICU	3 (3.8%)	1.still inICU 2. went to ICU butimproved 1 died on the floor
Length of Stay in ID unit (days)	4.6 ± 2.1	What about ICU/ floordays?
Time to Discharge(days)	4.1 ± 2.2 14 are stillhospitalized	They made the requirements for discharge less stringentduring the study 1. 2 negativeswabs 2. 1 negative swab with 34Ct 3. Ct <34 but good clinical outcome

	First Publication		Second Publication
Treatment Arm	Hydroxychloroquine n=14	Hydroxychloroquine + azithromycin	Hydroxychloroquine + azithromycin
		n=6	n=?
Baseline Viral Load (Ct)	25.4 ± 5.7	26.8 ± 2.5	23.6 ± 4.3 n=80
Negative PCR	8 (57.1%)	6 (100%)	83% at day 7 <mark>(n=50)</mark>
	at day 6	at day 6	93% at day 8 <mark>(n=45)</mark>

- Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial
 - Inclusion/exclusion criteria are not clearly defined
 - Non-randomized, small sample size
 - Unclear why some patients had viral loads while others only had a negative or positive result
 - Huge age range, mild disease, no comorbidity data

- Hydroxychloroquine-Azithromycin and COVID-19, 80 patient observational study
 - Results are not compared to hydroxychloroquine alone
 - Inclusion/exclusion criteria are not clear
 - Assessment of negative viral load at day 7 and 8
 - Authors changed the criteria for discharge and threshold for negative PCR as the study progressed
 - Even larger age range and mild disease

Treat early in patients with mild presentation to bring down viral load and prevent spread

Hydroxychloroquine effectiveness is encouraging

- Cumulative side effects (QTc prolongation, increased need to EKG)
- Short supply issues
- Additive effect of azithromycin is unclear

Hydroyxychloroquine Studies

Hydroxychloroquine is a chloroquine analog with

fewer drug-drug interactions.

Brown et al. Brief Summary of Potential SARS-CoV-2 Prophylactic and Treatment Drugs in the ED

on these results, they recommend an oral loading dose of

400 mg hydroxychloroquine sulfate twice daily on day one

followed by a maintenance dose of 200 mg twice daily for four days.

10 clinical trials in China evaluating the effect and safety of chloroquine in the treatment
Prelim data not released
Gao et al reported in a news briefing by the State Council of China that chloroquine
phosphate had "demonstrated marked efficacy and acceptable safety in treating COVID-19 associated pneumonia in multicenter clinical trials.
Jun <i>et al</i> conducted a prospective study of 30 SARSCoV-2 positive patients randomized to either standard
treatment or hydroxychloroquine. They found no difference
between the two groups with respect to median duration from
hospitalization to undetectable serum SARS-CoV-2, median
time to body temperature normalization, and development
of diarrhea and liver function test abnormalities.17

Lopinavir-Ritonavir

IL-6 Blockers

THERE ARE ALSO ONGOING STUDIES WITH MONOCLONAL ANTIBODIES TOCILIZUMAB (CLINICALTRIALS.GOV: NCT04317092) AND SARILUMAB (CLINICALTRIALS.GOV: NCT04315298). BOTH OF THESE AGENTS ARE INTERLEUKIN -6 RECEPTOR ANTAGONISTS THAT COULD THEORETICALLY ATTENUATE CYTOKINE AND ACUTE PHASE REACTANTS. SARS-COV-2 DEPENDS ON THE ACE2 RECEPTOR FOR ENTRY, ANOTHER MULTICENTER PLACEBO-CONTROLLED TRIAL IS ENROLLING PATIENTS EVALUATING LOSARTAN (ANGIOTENSIN 2 RECEPTOR BLOCKER) IN PATIENTS REQUIRING HOSPITALIZATIONS (CLINICALTRIALS.

GOV: NCT04312009).

Future Presentation

JAMA. doi:10.1001/jama.2020.6019 Published online April 13, 2020.

References

- Coronavirus Disease 2019 (COVID-19) in the U.S. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html. Published March 13, 2020. Accessed March 13, 2020.
- 2. NIH clinical trial of investigational vaccine for COVID-19 begins. Available at: https://www.nih.gov/news-events/news-releases/nihclinical-trial-investigational-vaccine-covid-19-begins. Published March
- 16, 2020. Accessed March 18, 2020.
- 3. Lexi-Drugs Online. Available at: https://www.wolterskluwercdi.com/
- lexicomp-online/. Published 2020. Accessed March 23, 2020.
- 4. Takeda Initiates Development of a Plasma-Derived Therapy for $\ensuremath{\mathsf{COVID}}^{-}$
- 19. Available at: https://www.takeda.com/newsroom/newsreleases/
- 2020/takeda-initiates-development-of-a-plasma-derived-therapyfor-
- covid-19/. Published March 4, 2020. Accessed March 14, 2020.
- 5. Hung IF, To KK, Lee C-K, et al. Convalescent Plasma Treatment
- Reduced Mortality in Patients With Severe Pandemic Influenza A
- (H1N1) 2009 Virus Infection. Clin Infect Dis. 2011;52(4):447-56.
- 6. Cheng Y, Wong R, Soo YOY, et al. Use of convalescent plasma therapy
- in SARS patients in Hong Kong. *Eur J Clin Microbiol Infect Dis.* 2005;24(1):44-6.
- 7. China puts 245 COVID-19 patients on convalescent plasma therapy. Xinhua. Available at: http://www.xinhuanet.com/english/2020-

- 8. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell
- Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically
- Proven Protease Inhibitor. Cell. March 2020. In Press.
- 9. Casadevall A, Pirofski L. The convalescent sera option for containing
- COVID-19. J Clin Invest. March 2020. In Press.
- 10. Zumla A, Chan JFW, Azhar El, et al. Coronaviruses drug discovery
- and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-47.
- 11. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively
- inhibit the recently emerged novel coronavirus (2019-nCoV) in
- vitro. *Cell Res.* 2020;30(3):269-71.
- 12. Gilead. Available at: https://rdvcu.gilead.com. Accessed March 18, 2020.
- Western Journal of Emergency Medicine 4 Articles in Press
- Brief Summary of Potential SARS-CoV-2 Prophylactic and Treatment Drugs in the ED Brown et al.
- 13. Man dies after ingesting chloroquine in an attempt to prevent coronavirus.
- Available at: https://www.nbcnews.com/health/health-news/
- man-dies-after-ingesting-chloroquine-attempt-prevent-coronavirus-
- n1167166 Assessed March 24 2020

References

14. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has

shown apparent efficacy in treatment of COVID-19 associated pneumonia

in clinical studies. Biosci Trends. February 2020. In Press.

15. Audio transcript of the news briefing held by the State Council of

China on February 17, 2020. The National Health Commission of the

People's Republic of China. February 2020. Available at: http://www.

nhc.gov.cn/xcs/yqfkdt/202002/f12a62d10c2a4 8c6895cedf2faea6e1f.

shtml. Accessed March 24, 2020.

16. Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of

Optimized Dosing Design of Hydroxychloroquine for the Treatment of

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Clin Infect Dis. March 2020. In Press.

17. Jun C, Danping L, Ping L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-*J Zhejiang Univ (Med Sci).* 2020;49.

18. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and

azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents. March 2020. In Press.

19. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med.* March 2020. In Press